The assay of electromagnetic spectra will be the basis for the Shunya field quantity of field fractal density

http://www.sciencedirect.com/science/article/pii/S0301751609001574

https://docs.google.com/viewer?a=v&q=cache:9OvstweGMX0J:www.promega.com/~/media/Files/Resources/Technical%2520References/Absorbance%2520Excitation%2520and%2520Emission%2520Spectra%2520for%2520Bioluminescent%2520Assays.pdf+&hl=en&gl=uk&pid=bl&srcid=ADGEESi3bum9-LzWGIOKYkrPqkjPNP3B8nxEn6wVmxhecDe4-zdopR8UPZAfnOn52pvUDWeLuOaPLAsYpBbh4d8ZPUPfr6ldYR8J7f8EzW9yTkKk3SBF9fSzSCTNB9Ub18APF445nLt-&sig=AHIEtbQgqqKZbJzdB4rEF2Qzf9qgN5C7BA

http://www.moleculardevices.com/Products/Instruments/Microplate-Readers/Single-Mode-Readers/Luminescence/SpectraMax-L.html

http://nevada-outback-gems.com/Reference_pages/assay.htm

The resulting leach liquid, no matter the digestion process, is analyzed with special equipment. The instruments used in these analyses measure very small quantities of these indicator elements, and include atomic absorption, x-ray fluorescence, inductively coupled plasma with atomic emission spectroscopy, mass spectroscopy and infrared spectroscopy.

http://www.sciencedirect.com/science/article/pii/S0005272889803470

http://www.ncbi.nlm.nih.gov/pubmed/17169320

http://www.assay-protocol.com/index.php?page=fourier-transform-infrared-ftir-spectroscopy-assay

http://pubs.acs.org/doi/abs/10.1021/nn204624p

many of these techniques will predicate a mass concept, but of course this will be excluded in the definition of fractal regional density, and the process modified to ensure it is not crucial to the asay. Mass is not to be assumed as fundamental in this Shunya field theory, instead the spectra count itself is what is fundamental.

http://www.fcsxpert.com/classroom/apps/adv_interactions.html

http://en.wikipedia.org/wiki/Metallurgical_assay

http://pubs.rsc.org/en/Content/ArticleLanding/2011/AY/C0AY00629G

http://www.bioscience.org/2008/v13/af/3112/fulltext.asp?bframe=figures.htm&doi=yes

As stange as it may have looked, the technology exists to establish and refine this quantity of density measure for the electromagnetic fields commonly found in our local space or Shunya field fractal structure.

With this as the basis for our Quantity of fractal field density measure, the underlying fractal structured field theory accounts for the measured behaviours of the spectra on a statistical basis, linking directly also to probability descriptions from the spectral results.

The discretization of the fields into condensing and rarefying ones must be developed on the statisitcal spectral measures and is unlikely to show such a binary or polar distinction, but if the statisitical behaviours result in an accurate model of the fractal field dispositions it may be possible to determine unreckognised fields beyond the posited 2(condensing, rarefying with anti clockwise substructure) or 4(strong, weak nuclear, electromagnetic and gravity)

http://cores.ucsf.edu/x-ray-crystallography-assay.html

http://www.pharmaceutical-int.com/article/flexus-and-nanodrop.html

http://www.thesgc.org/scientists/groups/oxford/crystallography

http://en.wikipedia.org/wiki/Nucleic_acid_structure_determination

http://www.bnl.gov/newsroom/news.php?a=23175

http://www.sciencebase.com/science-blog/latest-spectroscopy-and-crystallography.html

http://crystallography.org.uk/education/

http://www.bbc.co.uk/programmes/b01p0s9s

http://downloads.bbc.co.uk/podcasts/radio4/iot/iot_20121128-1718a.mp3

http://en.wikipedia.org/wiki/Crystal

http://wavefunction.fieldofscience.com/2012/10/crystallography-chemistry-and-nobel.html

At last a bit of easy history

http://downloads.bbc.co.uk/podcasts/radio4/iot/iot_20121128-1718a.mp3

https://docs.google.com/viewer?a=v&q=cache:3C4bQmYVrAkJ:www.slac.stanford.edu/pubs/beamline/25/2/25-2-assmus.pdf+&hl=en&gl=uk&pid=bl&srcid=ADGEESiDaiW4etmQRA6Y6LjbRMe_x9yfv0c64t8ZuuciGH3T-xoPiEWKOtsPMHslwb4ROKM_ofkMJ0i_vbDeAiwSu6dW9GxJwXIhFmhH_MZXlGvQsgJz5lPrLFonGIjmw6_K74Mnl6cS&sig=AHIEtbSueet7iRsKnRebr6TRB16bn7xKhw

http://en.wikipedia.org/wiki/Spectroscopy

http://en.wikipedia.org/wiki/History_of_spectroscopy

Finally the early contributions to crystallography before xrays

http://www.persee.fr/web/revues/home/prescript/article/rhs_0151-4105_1989_num_42_1_4136

https://docs.google.com/viewer?a=v&q=cache:Tg7jL9ineBMJ:www.uni-koeln.de/minkowski/contributions/Crystallography_E_Scholz.pdf

+&hl=en&gl=uk&pid=bl&srcid=ADGEESjDZnhhRQ6obxs3xr19y_Wrn8Pt7LvhfJYKHUe0p6gnCcORVVZZ2K0Jm4CxGNiD4-9TOubOT9OVglPvg_V8Y2qj2XWN5KUu1k-G-0aBzuifjB9DEOiXN8AX1QX4SB5bdUHo1Rha&sig=AHIEtbS7tEKQM1MZYjwng89hPadkm5YfGw

http://www.archive.org/stream/historyofeuropea02merzuoft/historyofeuropea02merzuoft_djvu.txt

ON THE KINETIC OK MECHANICAL VIEW OF NATURE.

The idea of motion in ancient philosophy, 3 ; Descartes' development of the

kinetic view, 6 ; Huygens and Newton, 7 ; Revival of the kinetic view

in the nineteenth century, 7 ; Young and Fresnel, 8 ; UnduLttorj- and

emission theories, 11 ; Doth theories kinetic, 11 ; Undulatory theory

prepared by acoustics, 12 ; Newton's authority on the side of the emission

theory, 14; But also suggests the other theory, 15; Biot, BrewHter,

and Laplace against the undulatory theory, 16 ; Euler the suceeabor of

Huygens, 16; Young, 16; His "general law of the interference of

light," 18 ; Theory of the luminiferous ether, 18 ; Brougham's attack on

Young, 19 ; Augustin Fresnel, 21 ; Difficulties presented by the jwliir-

isation of light, 22 ; Fresnel's Memoir on Ditfi-action, 25 ; Young and

Fresnel introduce the conception of transverse vibrations, 28 ; Mechani-

cal difference between light and sound, 30 ; The proi)ertie8 of the ether,

31 ; Other kinetic theories, 34 ; Kinetic theory of ga.ses, 34 ; Vortex

motion, 35 ; Faraday's researches, 35 ; Problems aa to tlie nature of the

ether, 36 ; The theory of elasticity, 40 ; The problem of the ether may

be treated mathematically, 44 ; or experimentally, 44 ; Necessity of

combining the two methods, 44 ; Spectrum analysis, 45 ; Tl>e rlue

furnished by the phenomena on which it depends, 47 ; Sir 0. St<>ki>«,

47 ; (iustav KirchhofF, 48 ; Explanation of fluorescence, 52 ; View of (he

ether as an "elastic solid," 54 ; Lord Kelvin's rcseiux-lies, 55 ; Tyndull'*

' Heat,' 57 ; Lord Kelvin's vortex theory of rnalltT, 57 ; Heiuiholi*'*

investigations, 58 ; Earlier researches on vortex motion, (51 ; IufluoiKX»

of Helmholtz's investigations in England, 62 ; Difl^icultjos of liio vort<«x

ring theory, 64 ; Modern view of electrical plienomcna : KanuUy, 6«3 ;Vlll CONTENTS.

" Lines of force," 68 ; Development of the conception by Lord Kelvin,

71 ; Clerk-Maxwell, 76 ; His series of works on the theory of electricity,

78; His conception of "tubes of force," 80; " Electrotonic state" of

matter, 81 ; Correspondence between velocities of light and electricity,

84 ; " Elastic disturbances " of the same medium, 85 ; Consequences on

the lines of the theory of Energy, 87 ; Destructive effect of the new

theories on the astronomical view, 89 ; Lord Kelvin on the vibrations

of the ether, 91 ; Indefiniteness of the electro-magnetic theory, 93.CHAPTER VII.

ON THE PHYSICAL VIEW OF NATDRE.

Recapitulation, 95 ; Insufficiency of the astronomical, atomic, and kinetic

views, 96 ; The conception of energy, 96 ; The term first used by Young,

98 ; Watt introduces the term " power," 99 ; Poncelet introduces the

term "mechanical work," 101 ; Black, Rumford, and Davy, 102; Cor-

relation of forces, 105 ; Liebig, 105 ; Johannes Miiller, 106 ; F. Mohr,

107 ; Mayer, 108 ; Joule, 110 ; Helmholtz, 112 ; "Work" and "energy"

introduced by Clausius and Thomson, 115; Sadi Carnot, 117; Carnot

introduces the idea of "availability," 119 ; Thomson introduces the idea

of "dissipation," 119; Fourier, 120; His influence on Carnot, 122;

Clapeyron's graphical method, 123 ; Perpetual motion impossible, 124 ;

Application by William and James Thomson, 126 ; The two laws of

thermodynamics, 128 ; Summary statement of Thomson (Lord Kelvin),

132 ; Rankine, Zeuuer, and Hirn, 133 ; Revolutions brought about by

idea of energy, 137; Helmholtz on "tension," 138; "Potential" and

"actual" energy, 139 ; The Scotch school, 141 ; Thomson and Tait, 144;

Clerk – Maxwell, 145 ; Faraday, 146 ; Helmholtz on electro-dynamics,

149; Ostwald's physical chemistry, 153; The factor of "cost" in

industry, 155 ; Berthelot and Ostwald, 157 ; Arrhenius, 159 ; Graham

and Andrews, 161 ; Dissociation, 163 ; Hittorf and Kohlrausch, 164 ;

Victor Meyer on change of chemical views, 165 ; Ostwald's journal, 166 ;

Willard Gibbs, 167 ; Entropy, 169 ; Horstmann, 170 ; Helmholtz's "free

energy," 173 ; Kelvin's "available energy," 174 ; Ostwald's ' Allgemeine

Chemie,' 176 ; " Kinetics" and "energetics," 180 ; Criticism of mechani-

cal view, 183 ; The outcome, 187 ; Recent triumphs of atomic view, 188 ;

Modern electrical researches, 189; The term "electron," 193; Diffi-

culties of Clerk-Maxwell's theory, 194 ; What are electric charges 1

195 ; Dr Larmor's position, 195 ; Objections raised by atomists, 198 ;

Artificial character of modern dynamical explanations, 199; The phil-

osophic problem raised, 199.

It is necessary to recast all these struuctural views i the fractal paradigm to avoid the false step of slipping into the mass tautology. Similarly the notion of an independent mass with appended attributes and properties has to be exposed and fractalised. The essential pattern of the corpuscular theory is a simple fractal structure based on scale, with the combinatorial marker of density, Algebraically density was continuous but different densities were discrete, thus Justus Grassmann model of the continuous being analogous to the discrete model, and eventually identified with the discrete model holds.

The disposition of this discrete arrangement naturally contributes to notions of crystalline structure if the model is allowed to be recursively or iteratively Extended. This is the root idea of Extension theory as it applies to regular structures. The application to irregular structures is the analytical work of Hermann Grassmann.