Dynamic Spaciometry

Before Dirac, none considered Instantaneous Action definitionally. Instantaneous action was always a ratio with time, and to avoid infinite values the units of time were changed, uniformity was posited and empirical measurements were used rather than theoretical. A Good deal of common sense was exercised to keep mathematical formalisms from introducing non pragmatic solutions.

That all changed when new philosophers, spoon fed on the belief that mathematics can speak to the attentive about reality in a way no other reasoning can, started to believe their equations and identities and formulations were reality, not mere models of human experience of reality.

When one is brought up to suppose a uniform development of theoretical ideas, that the average is good enough . it becomes difficult to deal with actual data from sensitive measuring tools. Statistical methods were developed and applied for dealing with large volumes of data. consequently no simple direct relationships and formulae could be derived with theoretical hypothesis.

Eventually theoretical considerations became overwhelmed by the massive uncertainty in interpreting the data. The solution was to go probabilistic with the statisitical data. Now np one could be certain about anything!

The rise of computing machines able to cope with masses of data and apply the new probabilisitic methods restored some control to a nervous and jittery scientific community. But the answer was not to go probabilistic, but to go fractal, and to go into Aperiodic behaviours, notably called “chaos”. And the one trick that was missed, explpoted by Dirac was to use the envelope around space filling curves to define the value of whar is inside the envelope. The boundary condition became essential to describe behaviours within a boundary.

The issues that come together to support the modern structure of mathematical physics are wide ranging, but not always apt. De Moivre himself developed probability to a high degree in competition with Strenger, and based on refinements of Cardanos work in combinatorial sequences and structures. De Moivre saw a connection with the sines because producing accurate Sine tables was the major work of the times, both for commercial navigation and astronomical navigation.

Few realise that all the work on polynomials and probabilities ultimately have one root, the unit circle. De Moivre had a considerable advantage due to his mentor(Newton) and the development of the Cotes De Moivre Theorems, which evenso Cotes appreciated the importance of more than he.

Thus ultimately probability is defined on closed conditions, and to extend it to open conditions is an artifice of infinity!

De Moivre was Newton’s student. Thus , like Newton he was Archimedean. He did not accept unending quantities. Thus he expected and utilised approximations , finite quantifications. His argument was simple, but based on Euclids algorithm.,should a process be perisos, that is approximate, exhaustion of the process is acceptable if handled correctly. Certain elements of the procedure can be left off. These parts do not vanish, but combinatorially they are too small to make much difference, so they are simply not combined.

We can then consider the perisos result as the approximate unit for ” measurement, an approximate metron. This unit Is used in all subsequent synthesis, and the shortfall is rounded away. It is the failure to remember that the model is approximate that generates spurious small scale effects!

The calculus of continuous and infinite processes can also generate spurious effects. It is precisely when a ” model” is mistaken for reality when this has it’s most devastating effect.

The rhetorical paraphernalia, or terminology , is often mistaken for procedural combinatorics. Thus he mnemonic value of the notation is mistaken as an evaluation procedure. Many such mnemonics are not evaluatesble. Instead, some jiggerry pokery is done, and an identification is made that is evaluative, and that is used instead of the terminology. Dirac’s function is a simple example of this.
Drac’s delta function.

The algebraisation of astrological combinatorics does not arise , as we are told from generalisation, or going from the particular to the general. It arises from rhetorical style, in which spaciometric forms/ideas and relations are described terminologically, symbolically or translatably into another language, as in a code. Any method is already general, and not a particular instance. When I apply a method of combining forms in space that method is as general as it will ever actually get!

Now the habit of applying numerical mnemonics to these methods is not in fact a habit of giving a particular instance. It is simply reiterating the general relationship using a set of sequenced symbols. This set of sequences whether” numerical” or ” alphabetic” provides inversion, to be sure, but it give illustration to the already general method of combination, and disguises, encodes this method in a format that may or may not represent it. To call its representation a particular is misleading, unless such a reference be fully put as a ” particular encoding” using a ” particular” encoding sequence.

Further, should one” decode “the sequence, there is no meaningful information contained within it, because it is not an encoding of information but an application of a method that is already general.

These combinatorial methods or procedures are called algorithms, and of themselves encode no information. They are instructions in the sense of mnemonics of actual behaviours the recipient is expected to do. As such, they are rhetorical, and may be rewritten in any rhetorical style as art, sculpture, dance, speech etc. In biological systems of procedures they may be “written” as pure sequences of actions, resulting from mechanical/ helical/ electromagnetically interactions.

Thus the use of these rhetorical forms is a programming instructional language which we have now developed extensively into omputer programming languages with the miraculous effect of creating interactive technologies from the elements of our experiential continuum.

Let me no longer confuse ” mathematics” as being anything other thn an ancient computer programming language by which detailed process instructions are conveyed to an operator to perform.

The general method of quantification exposited explicitly by Newton, but implicitly utilised by all natural philosophers especially astrological and mechanical, is to use Spaciometry to represent experiences. Dynamic spatial events are represented by dynamic spatial models, and based upon the dynamic, metronomical response we often call counting. Static spatial events are based on static spaciometries, but the real observable precursor is that these are dynamic equilibria!

Thus nothing is truly, essentially static, all is dynamic and a consequence of an interplay, an interaction of pressures and forces inducing and directing dynamically all motion.

Newton’s Principia acknowledges this, because Newton wrote it in the light of his methods of fluents, a dynamical Spaciometry. Many indeed try to locate a Geometry as a prior Art, but in fact Newton only gives Mechanics as a prior art. Geometry, as Justus Grassmann, Schelling, and others found, was an entirely made up subject, drawing on mechanical principles and attempting to adhere them, unsuccessfully to Euclid’s Stoikeioon.

It bears repeating: Euclids Stoikeioon is not a work of geometry, but an introductory course in Platonic philosophy and the ” Theory of Ideas/Forms” that Plato and Socrates put forward as a metaphysical foundation to all their philosophising.

So, as Herakleitos opined, Panta Rhei, and motion, music, rhythm and dance poetry rhyme,etc are the essential rhetorical styles needed to acquire the wisdom of the Musai. Why mathematics should assume this role is a perverse set of historical circumstances which shall not detain me here( read my blog posts).

Using Spaciometry, dynamic Spaciometry in this way enables one at once to record spatial dynamics graphically. But Leibniz wanted to record it using any kind of symbol, that s algebraically. It was Hermann Grassmann who provided the Rosetta stone to translate between graphical Spaciometry and algebraic Spaciometry. Not many people would now thank him! However it truly is one of the most remarkable analytical methods to date.

Peano recognised this as a young man, and translated Die Ausdehnungslehre 1844 into his own, redacted form in Italian. This lead to an unexpected development. While Prussian society under Gauss retarded Grassmann, the educational reforms similarly hampered any progress with his work. The Prussian empire had a major task on its hands to equip its infrastructure with the new insights and technologies and with homegrown ingenuity! The Grassmann’s felt this was a major priority.

It was only some years later that Robert, Hermann’s brother, prevailed on him to revamp and republish through his own ( Roberts) printing company. As editor Robert infused the new version with his own ideas! (1862). It took Hermann by surprise and elicited some dismay, but it did popularise his ideas and lead to a renaissance of interest in his 1844 self published work.
Although the 2 are named similarly, they represent different ideals. Robert wanted to promote his father’s work through his work and that of the family name. Hermann wrote out of sheer genius and passion, and “tore up the ground!” Consequently Robert knew it was too far out of line to be accepted, and sought to tone it down to a more acceptable mathematical form.

I can recommend reading the 1844 version in German. All translations of it are not faithful to Herrmann, but rather are more swayed by Robert. Hermann’s ideas/forms as Peano realised, are truly radical, and are the basis of Peano space filling curves , n dimensional spaces etc.

The early group and ring theoretical ideas of Justus Grassmann are carried through, but corrected by Herrmann. It is this group theoretical structuring, ring theoretical and field theoretical structure which takes the place of early combinatorial theory in Hermann’s works.

We find David Hilbert, Klein, Cayley all exploring and writing on the same theme. In Britain, A N Whitehead and Russell were influenced heavily, if not converts. The impact of the Grassmann analyses have been far reaching and profound and rival the impact of their contemporary Gauss. What I have come to realise is that the two camps were writing for opposite ends of the Audience: Gauss for Academia, Grassmann for primary efucation. In that regard only Hermann’s work could have made the crossover.

Magnet Theory

The AETHER model of magneto electrodynamics
Aero Equipotential Thermal Hydrodynamical Enthalpy Reaction.

This is a fluid dynamical model in which the principle modelling elements are air and water. The Enthalpy of any system is considered closed, ie constant, and thermal radiation is generated as the transformative loss in the system which is accounted for in the Enthalpy equations. The equipotentials of pressure in the fluidic media are the force structures of the system, with acceleration bing orthogonal to any point in an Equipotential surface contour in space.

The jet engine as a model of an electro magnet.



The Venturi effect provides the attraction , but how does it apply repulsion?
Turbo jet

We think in terms of 2, that is of opposites. It is time to think in terms of 3. complementary.
This complementary relationship allows opposites as well as complements to behave similarly, almost.
Thus to every action there is a complementary action which determines the outcome of the whole action system.Equal and opposite accelerations on a rigid object must be complemented by the transfer of action through and around that rigid body that exhibits it as rigid. We tend to edit out the complementary action(s) and so fail to grasp all but the most simplest of cases.


The importance of 3 is not its cardinal value, but it’s symbolic significance. There is always another viewpoint outside the one adopted. So the Venturi effect provides suck and blow at polar ends? But look again. Blow comes out one side suck the other side. These sides can be ducted so that polarity is not based on opposites!
Suppose the inlet manifold is in the same position or surrounding the exhaust pipe? The issue now becomes why does this not ” work” ?
Clearly it does work, but not at optimum effect as desired. Similarly the polar model only picks out the optimum “magnetic” behaviour.
3 also reminds us that there does not have to be just one fluid in our model, or just 2 contra fluids. We can have 3 or more?

An aether like substance, as Newton observed would have to be of at least 2 sorts, expansive and / or contractive. If 2 do not suffice then try 3!

I can build a sensible model from 3 complementary substances, but it begs the question why 3? The same question is begged but ignored as superfluous when a model with one or 2 substances is proposed! We literally choose to ignore the question!

The question is not a helpful question, it is a creative question, to generate new and interesting connections. It resolves nothing. However, “how?” focuses on the mechanics of ‘a system and clarifies what limits are observable. Why they are observed is not answerable except by myth making or creative fact making. Such is how our minds work.

Click to access M23-Marelon-Anti-Venturi.pdf

Click to access Model%2021%20NEW%202006.pdf

Click to access ambient_air_paper.pdf

The anti venturi effect is there, as should be anticipated by applying Newtons third law as a principle, it is just de emphasised. You have to consider the Bernoulli analysis .What this means is made clear with the ram jet problem, when at Mach 2 or above engine efficiency of a jet declines considerably. Internal turbines can no longer handle the aero hydrostatic head of pressure in front of the Venturi inlet., the anti Venturi.

What this means is that if we place 2 “sucking” ends of a vortex together they will repel each other not suck each other together. They are not Sucking they are “blowing” into a low pressure and out again. That is why they blow each other apart at both ends of a jet if the same ends are placed together.

Aero hydrodynamic pressure

Ram jets provide a model of magnetic induction if a turbine jet is used to start its operation.

Bernoulli principle also helps to demonstrate heat flow, indicating that heat can flow to a “hotter” region through a cold conduit provided work is employed.

The accelerant is introduced into the jet at or near the centre of the Venturi action. This position within the tube is where the flow is greatest, but external to the tube the pressure difference is greatest. Therefore the pressure potentials, the pressure contours of Equipotential pattern out, out into a ring or donut of high pressure , low pressure donut, high “pressure/impulse” donut.

The pattern of induced magnets around a permanent magnet trace out this donut shape as a combined donut. The 2 pressure types are obscured into one. In a jet engine aero hydrodynamic the 2 pressure types are called thrust and drag.

The accelerant in a magnetic expression of the Bernoulli type system is called electric tension. This accelerant enters the magnetic Venturi where the magnetic ” pressure” effect is at its low point, but the magnetic flux velocity is at its most . It acts to further accelerate the magnetic flux velocities.

The accelerant also has a pressure Equipotential gradient.

We now come to a conceptual difficulty which arises from assumptions of continuity in these media that are in dynamic flow. However, careful observations in all sensory modalities gives evidence to the descriptions being ” fibrulized”, that is that the actual flows are not in streams that are contiguous, but vortices and anti vortices that are contiguous.
This pattern has been demonstrated in part bt work by Claes Johnson .
I can now proceed with this more complex dynamical model, to separate out the flows of the four types, 2 magnetic in pressure, and 2 electric in pressures.

Pressure is here used to denote the sensing tools, and it is these sensing tools which define the patterns, and the results of which, combined by giving common referential frame coordinates define our common concept of magnetic, electric and electromagnetic behaviours.

The tools used to sense define dielectric and diamagnetic materials, and subsequently equipotentials of ” pressure” in these materials. The concept of ” motion” in these materials will turn out to be widely conceptual, requiring concepts of waves or particles to express. Of the 2 waves naturally fit a fluid model , but currents are fundamental to waves in such a model. It is the disconnect between currents and waves in a fluid model that leaves many puzzled. In that regard a kinetic theory expressed in terms of ” hard” particles, instead of fluid current vortices is disingenuous.

Maxwell was not able computationally to demonstrate the potential of his conception, and his contemporaries were not of a mind to pursue his reflections. Euler. D’Alambert Prandtl lacked important calculating aids to explore further, and the notion of Fractal Geometry, although intuitively understood was discounted by those who sought to exposit only by reason, and not on empirical data.

This pattern has been demonstrated in part by work by Claes Johnson . Google Claes Johnson.

Claes Johnson’s ideas and evidence reveal an empirical confusion. Clearly a high pressure at the forward end of a jet or moving object should act as inertia, requiring a greater pressure at the trailing end to overcome it. Bernoulli’s principle only takes two parameters: that inside the Venturi and that outside. Clearly there are 3 pressures to be measured, if not more.
To explain why a magnet is not dynamically active, I have to concede that the actions at both ends are anti one another. Thus I theoretically have 2 fluid flows contra to each other, and anti in their constituent properties. The vortices that impulse at one end, are anti to the vortices that impulse at the other end.when they combine, they provide the impulse thrust toward each other, but repel,my impulse , like vortices.

The use of the Dirac delta function is also important to describe the different pressures at the ends of a Venturi tube. But the notion has to be geometrically extended to cones, spheres and torii to make physical sense.